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Abstract

We present a two-dimensional time-dependent semiclassical transport model for mixed-state scattering with thin quan-
tum films. The stationary Schrödinger equation is solved in the quantum barrier to obtain the scattering coefficients used to
supply the interface condition that connects two classical domains. The solution in the classical regions is solved using a
particle method and interface condition combined with the Hamiltonian-preserving scheme. The overall cost is roughly the
same as solving a classical barrier. We construct a numerical method based on this semiclassical approach and validate the
model using two numerical examples.
Published by Elsevier Inc.
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1. Introduction

In [14,25], we developed a semiclassical model for one-dimensional thin quantum barriers for mixed-state
dynamics. In the present work, we extend the results to higher dimensions, discuss the numerical implemen-
tation of the model, and demonstrate convergence to the semiclassical limit. Simulation of particles interacting
with quantum structures is difficult when the system is largely classical with localized quantum features since
resolution of the smaller scale is typically required to ensure consistency of the solution. This is because
changes in the potential at the quantum scale are manifested as discontinuities on the classical scale. So, even
when one is only interested in the macroscopic behavior, one may be forced to resolve the quantum dynamics.
Of course, computational difficulties are compounded in higher dimensions.
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A primary motivation is modeling electron transport in plasmas or semiconductors across nanostructures,
where the quantum phenomena in localized regions cannot be ignored. While quantum mechanics certainly
applies in the entire domain, it is computationally more efficient to take a multiscale approach using classical
mechanics away from the quantum interface via a domain decomposition technique. Ben Abdallah, Gamba
and Degond introduced such a model in [4–6], in which an interface condition coupled the classical and
the quantum regions. This work is an expansion of our previous one-dimensional model, which itself is an
extension of the Hamiltonian-preserving finite-volume method introduced by Jin and Wen [15–17], for solving
the multi-dimensional Liouville equation with a classical discontinuous potential. Such methods have been
applied to problems in geometric optics [17] and high frequency elastic waves [13]. The main contribution
of the method proposed in this article and in our earlier article [14] is the extension of the Hamiltonian-pre-
serving scheme to not only discontinuous potentials but also potentials that are not defined in the semiclassical
limit. Hamilton-preserving methods are in turn based on well-balanced kinetic schemes of Perthame and Semi-
oni [26] for shallow water equation with discontinuous topography. The goal in such a scheme is to preserve
the steady-state solution of the shallow water equation when the speed is zero. This is achieved by using the
fact that the density distribution f ðx; p; tÞ, where x is the position, p is the momentum, remains unchanged
along the characteristics. Thus,
f ðxþ; pþ; tÞ ¼ f ðx�; p�; tÞ; ð1Þ

at a discontinuity, where the plus and minus superscripts denote right and left limits. The problem is more
challenging when there are multiple, even a continuum, of characteristics which satisfy (1). In such cases,
one must introduce additional constraints to preserve a physically meaningful model. The principal approach
in this article is to build an interface condition that properly incorporates partial transmission and reflection
information at the barrier into the numerical flux. Whereas in one-dimensional case, for which we developed
the finite-volume numerical scheme in [14], in higher dimensions it is advantageous to use a mesh-free particle
method to mollify the so-called curse of dimensionality.

The quantum barrier that separates the two classical regions differs from a classical barrier in that a
quantum wave can tunnel through, be partially transmitted and reflected by, and resonate inside of a bar-
rier. Our idea is to solve the Schrödinger equation inside the quantum barrier to generate scattering coef-
ficients and then use that information in the interface condition to solve the classical Liouville equation
through the barrier. When the quantum barrier is thin (on the order of a de Broglie wavelength), solving
the stationary Schrödinger equation suffices. So, the first step is merely preprocessing. Once the scattering
coefficients are generated, a particle method based on classical mechanics may be used. Hence, the
approach, which efficiently handles a thin quantum barrier, has a computational cost similar to a classical
simulation in the entire device.

While we limit discussion to two dimensions, the method does is not limited to two dimensions and may be
applied directly to three-dimensional problems.
2. Particle behavior at a quantum barrier

To model quantum dynamics, we consider a top-down multiscale approach by considering the quantum
effects as local corrections to the global classical particle dynamics. In order to isolate and simplify the prob-
lem, we make the following assumptions/limitations:

(1) The effective width of a barrier is O(e). On the classical scale, this means that we may approximate the
barrier as having zero width; on the quantum scale, this means that we may typify it as a single scattering
center and we may neglect particle dwell time in the quantum region in the semiclassical limit.

(2) The distance between neighboring barriers is O(1) and hence each barrier may be considered
independently.

(3) The change in the potential $V(x) is O(1) except at quantum barriers.
(4) The coherence time is sufficiently short and therefore we may neglect interference away from the barrier.
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We begin with the classical Hamiltonian system
d

dt
x ¼ rpHðx; pÞ; d

dt
p ¼ �rxHðx; pÞ; ð2Þ
where the Hamiltonian Hðx; pÞ ¼ 1
2
m�1jpj2 þ V ðxÞ gives the total energy and x 2 Rd denotes the position, p 2 Rd

denotes the momentum, and m is the effective mass. Let a bicharacteristic of the function Hðx; pÞ be the integral
curve uðtÞ ¼ ðxðtÞ; pðtÞÞ. Note that u(t) may not be defined for all time t 2 R. When H(u(t)) is differentiable,
d

dt
HðuðtÞÞ ¼ d

dt
x � rxH þ

d

dt
p � rpH ¼ 0; ð3Þ
from which it follows that the Hamiltonian is constant along any bicharacteristic u(t), i.e.,
HðuðtÞÞ ¼ 1

2
m�1jpj2 þ V ðxÞ ¼ E: ð4Þ
Eq. (3) may be interpreted as the strong form of the conservation of energy, while condition (4) may be inter-
preted as the weak form. If the potential V(x) is discontinuous or not defined in the semiclassical limit in some
region Q 2 Rd , the Hamiltonian system fails to have a global solution.

By the Liouville condition, the probability distribution f ðx; p; tÞ of a particle is merely advected along the
bicharacteristics. Hence from (3), the Liouville equation is
d

dt
f ðx; p; tÞ ¼ o

ot
f ðx; p; tÞ þ m�1p � rxf ðx; p; tÞ � rxV ðxÞ � rpf ðx; p; tÞ ¼ 0:
The time evolution of a particle may also be modeled using quantum mechanics. The Schrödinger equation,
i�h
o

ot
w ¼ bH w ¼ � �h2

2m
Dþ V ðxÞ

� �
w; ð5Þ
where �h is Planck’s constant, describes the time evolution of the probability amplitude wðx; t; ~x; ~pÞ initially cen-
tered at ~x with an initial energy state E ¼ Hð~x; ~pÞ. The von Neumann equation is the quantum analogue to the
Liouville equation. Consider a mixed-state system for which the initial state Hðx; pÞ of the particle is given in
terms of a macroscopic statistical distribution ~f ðx; pÞ. The von Neumann equation is
i�h
o

ot
q̂ðx; x0; tÞ ¼ � �h2

2m
½Dx � Dx0 � þ V ðxÞ � V ðx0Þ

� �
q̂ðx; x0; tÞ; ð6Þ
where the density matrix q̂ðx; x0; tÞ is defined as
q̂ðx; x0; tÞ ¼
Z

Rd

Z
Rd

~f ð~x; ~pÞwðx; t; ~x; ~pÞ�wðx0; t; ~x; ~pÞd~xd~p: ð7Þ
If the potential is sufficiently smooth, the quantum von Neumann description and the classical Liouville
descriptions are equivalent. To see this, consider a characteristic length and time scale Ldx and Ldt where
dx is the natural length scale such as a de Broglie wavelength dx = �h/p for some momentum p. By rescaling
x, x 0 and t
x 7!x=Ldx; x0 7!x0=Ldx; t 7!t=Ldt;
in the von Neumann equation we have
ie
o

ot
q̂ðx; x0; tÞ ¼ � e2

2m
½Dx � Dx0 � þ V ðxÞ � V ðx0Þ

� �
q̂ðx; x0Þ; ð8Þ
where the dimensionless scaled Planck constant e = [mL(dx)2/dt]�1�hand the effective mass m has been
nondimensionalized.

The Wigner transform, the Fourier transform of the density matrix, is
W ðx; p; tÞ ¼ 1

ð2pÞd
Z

Rd
q̂ðxþ 1

2
ey; x� 1

2
ey; tÞe�ip�y dy: ð9Þ
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By applying the transform to the von Neumann equation one has the Wigner equation [29]
o

ot
W þ p

m
� rxW �HeW ¼ 0;
where the nonlocal term
HeW ðx; p; tÞ ¼ 1

ð2pÞd
Z

Rd

i
e

V ðxþ 1

2
eyÞ � V ðx� 1

2
eyÞ

� �
�W ðx; y; tÞe�ip�y dy;
with
�W ðx; y; tÞ ¼
Z

Rd
W ðx; p; tÞeip�y dp;
being the inverse Fourier transform of W ðx; p; tÞ. When the potential V(x) is sufficiently smooth, one recovers
the classical Liouville equation in the limit as e! 0 [9,22]
of
ot
þ p

m
� rxf �rxV � rpf ¼ 0: ð10Þ
However, the classical limit is not valid at the discontinuities of the potential [1,24,28], where the potential
behaves as a quantum scatterer. Furthermore, for the Hamiltonian system (2) where the Hamiltonian is dis-
continuous at a potential barrier, the classical well-posedness of the initial value problem – which requires the
right-hand side to be Lipschitz continuous – does not apply. The renormalized solution introduced by DiPerna
and Lions [7] applies to the case when the right hand side is discontinuous. Our problem has much less reg-
ularity than their problem. An interface condition was introduced in [17] to couple the Liouville equation
away from the interface and the well-posedness of the initial value problem to this solution was proven when
the Hamiltonian is piecewise constant. In the case of a quantum barrier, we may consider a multiscale domain
decomposition approach for a solution [5].

The key idea behind Hamiltonian-preserving schemes [15–17] is to (a) solve the Liouville equation locally in
two regions; (b) use the weak form of the conservation of energy to connect the local solutions together across
a barrier using a boundary condition that (c) uses a physically relevant information condition to choose the
correct solution. Let L be the locally defined set of bicharacteristics of the function Hðx; pÞ. By requiring the
Hamiltonian to be constant along trajectories, we create an equivalence class of bicharacteristics
½u� ¼ fu� 2 LjHðu�Þ ¼ HðuÞg.

In two dimensions there are a continuum of momenta pðhÞ ¼ ðp cos h; p sin hÞ associated with a Hamilto-
nian Hðx; pÞ ¼ E for fixed position x. Along a local bicharacteristic the momentum of a particle is uniquely
determined by continuity of the potential. But across a quantum barrier, where potential is discontinuous
and the gradient of the potential is classically undefined, the continuation of the momenta is not unique. In
order to match bicharacteristics, we use information at the quantum scale to construct an interface condition.

Generating a global bicharacteristic is a matter of connecting equivalent bicharacteristics at the barriers.
Consider the incident and scattered trajectory limits, ðxin; pinÞ and ðxout; p outÞ, on a barrier. From Eq. (4),
the magnitude of the momenta for reflected particles is unchanged
jpoutj ¼ jpinj; ð11aÞ
while the magnitude for the transmitted particles is
jpoutj ¼ jpinj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2m½V ðx inÞ � V ðxoutÞ�=jpinj

2
q

; ð11bÞ
unless |pin|2 < 2m[V(xout) � V(xin)], for which the transmitted momentum is imaginary and the particle is re-
flected. In order to resolve the nonuniqueness, we require an additional interface condition which we derive
from the Schrödinger equation across the interface. By interpreting a wave function as a statistical ensemble
of a large number of particles [23], we have the interface condition
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f ðxin; jpinj; hinÞ ¼
Z p=2

�p=2

Rðhout; jpinj; hinÞf ðxout; jpoutj; houtÞdhout

þ
Z p=2

�p=2

T ðhout; jpinj; hinÞf ðxout; jqoutj; houtÞdhout: ð12Þ
Here, Rðhout; jpinj; hinÞ is the probability of a particle with momentum |pin| incident at angle hin being reflected at
a reflection angle hout; T ðhout; jpinj; hinÞ is the probability of a particle incident with momentum |pin| at incident
angle hin being transmitted at a refraction angle hout; and |q|2 = |p|2 � 2mDV.

By considering the time-reversibility of the scattering process, we may formulate an alternative but equally
valid interface condition
f ðxout; jpoutj; houtÞ ¼
Z p=2

�p=2

Rðhin; jpoutj; houtÞf ðxin; jpinj; hinÞdhin

þ
Z p=2

�p=2

T ðhin; jpoutj; houtÞf ðxin; jqinj; hinÞdhin: ð13Þ
To differentiate between the two interface conditions, we will refer to (13) as a pull interface condition and (12)
as a push interface condition. The choice between the two equivalent interface conditions is an issue of imple-
mentation. An Eulerian method, such as the finite-volume method developed in [14], combines information by
pulling information from the appropriate bicharacteristics upwind of the barrier. A Lagrangian method, such
as the particle method, pushes the information to the appropriate bicharacteristics located downwind of the
barrier.

We assume that the probability of a particle being absorbed by the barrier is zero and hence
Z p=2

�p=2

Z p=2

�p=2

T ðu; jpj; hÞ þ Rðu; jpj; hÞdudh ¼ 1;
for all |p|.
Every interaction with a barrier potentially introduces a reflected and transmitted solution resulting in an

additional bicharacteristic. We may enumerate the solutions and define a bicharacteristic solution to the Liou-
ville equation as
fkðx; p; tÞ ¼
Z

f ðx0; p0; 0Þukðx; p; t; x0; p0Þdx0 dp0;
where
ukðx; p; t; x0; p0Þ ¼ dðxðtÞ � x0ÞdðpðtÞ � p0Þ;

is the kth global bicharacteristic for Hðx0; p0Þ. By linearity of the Liouville equation we may consider the gen-
eral solution as the superposition of the bicharacteristic solutions
f ðx; p; tÞ ¼
X

k

skðHðx; pÞÞfkðx; p; tÞ; ð14Þ
where skðHðx; pÞÞ is product of reflection and transmission probabilities along the kth bicharacteristic.
Where the potential is discontinuous, one may treat the gradient of the potential as an impulse force. How-

ever, the direction of such a force may not be well-defined at the classical scale. If the potential is discontin-
uous both in the direction normal to the barrier and also along the length of the barrier, we must use the
solution at the quantum scale to determine the appropriate scattering angles. We shall refine this idea when
we discuss the quantum scale solution in Section 3.1. If the semiclassical potential V ðx; yÞ is discontinuous
in the direction normal to the quantum barrier curve CQ but is continuous along the length of CQ, we take
the impulse force normal to the barrier curve. In this case, one has as a consequence of conservation of the
Hamiltonian that the change in momentum for a reflected particle is
Dp ¼ �2ðpin � n̂Þn̂; ð15Þ
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where n̂ is the unit normal to the barrier. For a transmitted particle, the change in momentum is
Dp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jpin � n̂j

2 þ 2mDV
q

� pin � n̂
� �

n̂: ð16Þ
One may relate the angle of refraction to the angle of incidence (defined with respect to the unit normal) by
using the conservation of the Hamiltonian to derive an expression analogous to Snell’s law of geometric optics
sin h2 ¼ sin h1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2mðV 1 � V 2Þ=jpj2

q
;

where h1 is the angle of incidence, h2 is the angle of refraction, V1 is the potential on the incident side and V2 is
the potential on the scattered side. From this expression, one may note that when the angle of incidence is
greater (shallower) than a critical angle
h1 > hc � cos�1ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðV 2 � V 1Þ=jpj2

q
Þ; ð17Þ
the particle is totally reflected by the barrier.
In the following sections, we present the particle method which solves the semiclassical Liouville equation.

The algorithm consists of an initialization routine and a Liouville solver. During initialization, we determine
transmission and reflection coefficients as a function of the incident momentum along the interface from both
sides. To do this, we compute the solution to the time-independent Schrödinger equation. For the semiclassical
model, we consider the quantum barrier as a curve CQ separating two classical regions C1 and C2. Because the
potential may change along the length of the curve, we compute the transmission and reflection coefficients
locally at each point along the curve. Consider a point x0 2 CQ and define the local coordinates ðx; yÞ where
the x-direction is normal to CQ and the y-direction is parallel to CQ at x0. By assumption, the width of the
quantum barrier is O(e) in the x-direction and the length of the quantum barrier is O(1) in the y-direction.
Formally, we will associate the semiclassical quantum barrier CQ with a region Q bordered by the classical
regions C1 and C2. By assumption the gradient of the potential V ðx; yÞ in classical regions is O(1).

Consider the two-dimensional time-independent Schrödinger equation
� e2

2m
o

2

ox2
þ o

2

oy2

� �
weðx; yÞ þ V eðx; yÞweðx; yÞ ¼ Eweðx; yÞ: ð18Þ
By rescaling x and y by e (~x ¼ ex and ~y ¼ ey), the Schrödinger equation (18) may locally be expressed as
� 1

2m
o

2

o~x2
þ o

2

o~y2

� �
wð~x; ~yÞ þ V ð~x; ~yÞwð~x; ~yÞ ¼ Ewð~x; ~yÞ: ð19Þ
In the limit as e! 0, we may regard C1 and C2 as the semi-infinite regions C1 ¼ fðx; yÞjx < x1g and
C2 ¼ fðx; yÞjx > x2g separated by an infinite strip Q ¼ fðx; yÞjx1 6 x 6 x2g for some x1 and x2. We solve the
time-independent Schrödinger equation over Q using information in C1 and C2 to generate transmission
and reflection coefficients. We are interested in computing the transmission and reflection coefficients locally,
so variations in the potential that are on the classical O(1) length scale in the y-direction may be neglected at
the quantum O(e) length scale. Hence, we define
V ðx; yÞ ¼
V 1; ðx; yÞ 2 C1;

V Qðx; yÞ; ðx; yÞ 2 Q;

V 2; ðx; yÞ 2 C2;

8><>: ð20Þ
where V1 and V2 are constants.
3. Implementation in two dimensions

Multiple dimensions present several challenges to computing both the quantum von Neumann equation
and the semiclassical limit. Such obstacles are the primary motivation for the development of a computation-
ally efficient and tractable semiclassical model. The von Neumann model for d-dimensional dynamics requires
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a 2d-dimensional density matrix. Whereas one may need 15 MB of computer memory to compute one-dimen-
sional dynamics for the von Neumann equation over a unit interval with the e = 500�1 using a direct method,
one would need 15 TB of computer memory to compute the equivalent two-dimensional dynamics using the
same method. Aside from memory, a two-dimensional solution needs a million times as many floating-point
operations as the equivalent one-dimensional solution. While an indirect method of solution mitigates the
memory concern by solving a large number of d-dimensional Schrödinger equations independently, such an
approach is impractical for general initial distributions.

The so-called curse of dimensionality also afflicts the numerical solution to the semiclassical model. One
could solve most one-dimensional problems with a typical computer using a dense, concurrent finite-volume
approach. In higher dimensions, such an approach in general is simply not effective. Consider the solution to a
two-dimensional problem, which requires four dimensions in phase space. Even a rather coarse mesh using an
array of 1004 floating-point numbers requires 380 MB of memory. Since we also require an additional swap
array, we find that 1004 is a practical limit for brute calculation. Because a problem often requires at least 100
grid points over a unit interval to resolve details, the finite-volume method developed in [14] is ineffective for
general multi-dimensional semiclassical problems. A sparse matrix algorithm may alleviate some of the diffi-
culty [13]; however, such an approach is viable only when the density information is sufficiently local (such as a
front), which is typically an exception for von Neumann solutions. In addition, sparse matrices introduce
numerical record-keeping issues further reducing the numerical efficiency of the approach.

It is because of the above reasons that we consider a mesh-free, particle method as an effective alternative.
For non-interacting particles, the bicharacteristic solutions may be computed independently thereby eliminat-
ing the memory constraints. While a finite-volume approach requires a concurrent solution using a dense
array, a particle method algorithm may be easily adapted for parallel computation on a distributed computer
cluster reducing the simulation run time. Furthermore, because other related physical models, such as for plas-
mas, often rely on particle methods for simulation it is quite natural to use such an approach for thin quantum
barriers.

While mitigating one set of challenges, the particle method introduces another set. Since the bicharacteris-
tics are used to track information directly, divergence of the bicharacteristics is problematic for all but trivial
examples. Because of this one must periodically reconstruct the data. Furthermore, reconstruction of the data
is difficult in regions where the particles are sparse and smoothing techniques may required to mollify the
numerical solution.

The focus of the remainder of this section is to develop an efficient numerical discretization of the semiclas-
sical model. Although we limit the discussion to two-dimensional physical space, the extension to three dimen-
sions follows using a similar treatment. In two-dimensional space, we consider the quantum barrier as a
smooth one-dimensional curve CQ separating two classical regions C1 and C2. In addition to changing across
the width of the barrier, the potential may also change along the length of the barrier at either the classical
O(1) length scale or a quantum O(e) length scale. Hence, in the semiclassical limit not only is the potential
discontinuous at the barrier in a direction normal to the barrier curve, but the potential may also be discon-
tinuous along the barrier curve. We prescribe an interface condition to match local solutions in order to con-
struct the global bicharacteristic solution. The interface condition for two-dimensional dynamics, potentially
joins a continuum of bicharacteristics computed using the time-independent Schrödinger equation.

3.1. Routine initialization

We now discuss the quantum transmitting boundary method [5,20] as a means of determining the reflection
and transmission coefficients of the thin two-dimensional quantum barrier. The quantum transmitting bound-
ary method is used to solve the time-independent Schrödinger equation in a region with open boundary con-
ditions. By using continuity of the solution and its derivative at the boundaries of an open quantum system in
conjunction with a solution with undetermined coefficients in the exterior region, one formulates a boundary
value problem for the interior region. The unknown coefficients are eliminated from the problem by combin-
ing the Dirichlet boundary conditions with the Neumann boundary conditions to get mixed boundary condi-
tions. Once the solution in the interior is known, it may be used on boundaries to recover the unknown
coefficients.
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We adapt the approach proposed by Lent and Kirkner [20]. Consider the solution to the local time-inde-
pendent Schrödinger equation (19). Here, and in the sequel, the tildes on x and y are dropped in order to sim-
plify notation. Without loss of generality, we take the potential in region C1 to be zero (V1 ” 0). In this case, the
Hamiltonian E ¼ p2

1=2m ¼ p2
2=2mþ V 2, where p1 is the magnitude of the momentum of a particle in region C1

and p2 is the magnitude of the momentum of a particle in region C2.
The solution to the local Schrödinger equation (19) may be written as the piecewise function
wðx; yÞ ¼
w1ðx; yÞ; ðx; yÞ 2 C1;

wQðx; yÞ; ðx; yÞ 2 Q;

w2ðx; yÞ; ðx; yÞ 2 C2;

8><>:

for which the components w1ðx; yÞ, wQðx; yÞ and w2ðx; yÞ are related by appropriate matching conditions. In
regions C1 and C2, where the potential V ðx; yÞ is constant, the Schrödinger equation simplifies to the Helmholtz
equations
�Dwjðx; yÞ ¼ p2
j wjðx; yÞ; j ¼ 1; 2; ð21Þ
which have the general solutions
wjðx; yÞ ¼
Z p

�p
ajðhÞeipj�ðx cos hþy sin hÞ dh; j ¼ 1; 2: ð22Þ
The current density is defined as Jðx; yÞ ¼ m�1Imð�wðx; yÞrwðx; yÞÞ, where m is the effective mass. For a direc-
tional component of the wavefunction wðx; yÞ is given by
ajðhÞeipj�ðx cos hþy sin hÞ; j ¼ 1; 2;
the directional contribution to average current density along the y-axis is
J jðx; y; hÞ ¼ jajðhÞj2pjðcos h; sin hÞ; j ¼ 1; 2: ð23Þ
So, the magnitude of the particle flux through a point in region C1 at an angle h is p1|a1(h)|2 and the magnitude
of the particle flux through a point in region C2 at an angle h is p2|a2(h)|2.

Consider particle initially in region C1 that strikes the barrier from the left with momentum, p1 at an angle
of incidence hin. The particle scatters with momentum p1 into region C1 if reflected and momentum p2 into
region C2 if transmitted. In this case, the solutions to Eq. (21) are
w1ðx; yÞ ¼ eip1ððx�x1Þ cos hinþy sin hinÞ þ
Z p=2

�p=2

rðhÞe�ip1ððx�x1Þ cos hþy sin hÞ dh; ð24aÞ

w2ðx; yÞ ¼
Z p=2

�p=2

tðhÞeip2ððx�x2Þ cos hþy sin hÞ dh; ð24bÞ
where r(h) and t(h) are some yet unknown scattering distributions. The probability that a particle is scattered
at some angle equals the ratio of the scattered current density to the incident current density. From conser-
vation of momentum,
p1ðcos hin; sin hinÞ ¼
Z p=2

�p=2

jrðhÞj2p1ðcos h; sin hÞdhþ
Z p=2

�p=2

jtðhÞj2p2ðcos h; sin hÞdh:
Hence, the reflection and transmission probability distributions over the sector h� 1
2
dh; hþ 1

2
dh

� �
for incident

ðp1; hinÞ are
dRðhÞ ¼ jrðhÞj2 cos h
cos hin

dh and dT ðhÞ ¼ jtðhÞj2 p2 cos h
p1 cos hin

dh: ð25Þ
While the form of the solutions (24) is convenient for discussing scattering solutions, it is inconvenient for actu-
ally determining them since the unknowns r(h) and t(h) are coupled through the integrals. The Schrödinger
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solution in region Q is a boundary value problem with boundaries parallel to the y-axis. By expressing the solu-
tions (24) in terms of the y-components of the momenta, we may rewrite them in the equivalent forms
w1ðx; yÞ ¼ eig1ðninÞðx�x1Þ eininy þ
Z 1

�1
s1ðnÞe�ig1ðnÞðx�x1Þ e�iny dn; ð26aÞ
with n = p1 sinh and
w2ðx; yÞ ¼
Z 1

�1
s2ðnÞeig2ðnÞðx�x2Þ einy dn; ð26bÞ
with n = p2 sinh. The x-components of the momenta are
g1ðnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

1 � n2
q

and g2ðnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

2 � n2
q

;

the complex scattering coefficients are
s1ðnÞ ¼
rðhÞp1= cos h; if jnj 6 p1

0; otherwise

	
and s2ðnÞ ¼

tðhÞp2= cos h; if jnj 6 p2

0; otherwise

	
; ð27Þ
and y-component of momentum of the incident particle is nin = p1 sinhin. Note that r(h) = s1(n)g1(n) and
t(h) = s2(n)g2(n) for g1(n) and g2(n) real. Let
ŵjðx; nÞ ¼
Z 1

�1
wjðx; yÞe�iny dy for j ¼ 1;Q; 2;
be the Fourier transforms of the wavefunctions w1;wQ;w2 in the three regions in the y-direction. The Fourier
transform Schrödinger equation (19) is
� o
2

ox2
ŵQðx; nÞ þ g2

1ðnÞŵQðx; nÞ þ 2m
Z 1

�1
ðV Qðx; yÞ � EÞwðx; yÞe�iny dy ¼ 0: ð28Þ
By taking the Fourier transform of the solutions (26) with respect to y we have
ŵ1ðx; nÞ ¼ dðn� ninÞeig1ðnÞðx�x1Þ þ s1ð�nÞe�ig1ðnÞðx�x1Þ; ð29aÞ

ŵ2ðx; nÞ ¼ s2ðnÞeig2ðnÞðx�x2Þ: ð29bÞ

By requiring that the solution w(x,y) and its first derivatives be continuous, we have the matching conditions
at x = x1 and x = x2
ŵjðxj; nÞ ¼ ŵQðxj; nÞ and
o

ox
ŵjðxj; nÞ ¼

o

ox
ŵQðxj; nÞ; ð30aÞ
for j = 1,2. Applying these matching conditions to (29) we have
ŵQðx1; nÞ ¼ dðn� ninÞ þ s1ð�nÞ; ŵQðx2; nÞ ¼ s2ðnÞ; ð31aÞ
o

ox
ŵQðx1; nÞ ¼ ig1ðnÞdðn� ninÞ � ig1ðnÞs1ð�nÞ; o

ox
ŵQðx2; nÞ ¼ ig2ðnÞs2ðnÞ: ð31bÞ
Eliminating the unknowns s1(n) and s2(n) gives the boundary conditions
ig1ðnÞŵQ þ
o

ox
ŵQ ¼ 2ig1ðnÞdðn� ninÞ at x ¼ x1; ð32aÞ

ig2ðnÞŵQ �
o

ox
ŵQ ¼ 0 at x ¼ x2: ð32bÞ
To recover the scattering distribution, we must solve Eq. (28) with the mixed boundary conditions (32). From
Eqs. (27) and (31), it follows that
rðh; p; hinÞ ¼ ŵQðx1; p sin hÞ � dðh� hinÞ and tðh; p; hinÞ ¼ ŵQðx2; p2ðpÞ sin hÞ:
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The boundary value problem (28) with (32) is numerically a difficult problem to solve. The problem can be
simplified for several important and physically relevant barriers, notably when the potential is constant along
the barrier or the potential is a sine function along the width. We will examine these potentials to verify the
model in Section 4. We are currently researching a numerical tractable method for general barriers.

If the potential V Qðx; yÞ is constant along the y-direction, i.e., V Qðx; yÞ � V QðxÞ, then Eq. (28) simplifies to
the separable equation
� o
2

ox2
ŵQ þ g2

1ðnÞŵQ þ 2mV QðxÞŵQ ¼ 0: ð33Þ
Since Ex ” g2(n)/2m is simply the contribution of the x-component of the momentum to the kinetic energy, we
have the one-dimensional Schrödinger equation
� 1

2m
o2

ox2
ŵQ þ V QðxÞŵQ ¼ ExŵQ; ð34Þ
with boundary conditions (32). One may also solve the boundary value problem (34) by using the transfer ma-
trix method [14,18,10]. Since the solution is constant in the y-direction, the semiclassical impulse force is nor-
mal to the barrier curve.

3.2. A particle method for the semiclassical Liouville equation

Following initialization, we solve the Liouville equation using the particle method by sampling a sufficiently
large number of particles from an initial distribution, solving Hamilton’s equations over a given time interval,
and then fitting the data to an appropriate mesh. By linearity of the Liouville equation, the particle method
may be implemented for each particle independently, permitting us to speed up computation by using a par-
allel computer cluster.

Formally, a particle is defined as the approximation to a Dirac measure using some type of cutoff function
[27]. The particle method consists of first approximating the initial conditions f0ðxÞ ¼

R
f0ðx0Þd

ðx� x0Þdðp� p0Þdx0 dp0 by a linear combination of Dirac measures f h
0 ¼

PN
j¼1wjdðx� xjÞdðp� pjÞ for some

set fxj; pj;wjg with position ðxj; pjÞ 2 Rd � Rd and weight wj P 0, where N is the sample size. The set
fxj; pj;wjg may be chosen by either a Monte Carlo method or a deterministic method. In a Monte Carlo
method, one samples ðxj; pjÞ randomly from a distribution and sets wj ¼ N�1

R
f0ðx; pÞdxdp. In a deterministic

approach, one assigns rj based on a uniform or nonuniform mesh and sets wj ¼
R

Cj
f0ðx; pÞdxdp for a cell

Cj 2 Rd � Rd . A problem is solved by considering the time evolution of these particles with the appropriate
weights. To solve the Liouville equation, where dðxðtÞ � x0ÞdðpðtÞ � p0Þ defines a single bicharacteristic for
the Hamiltonian Hðx; pÞ, we solve the Hamiltonian system of Eq. (2) for each particle sampled from f0ðx; pÞ.

A particle is sampled from the initial distribution either deterministically or with Monte Carlo sampling.
Monte Carlo sampling is important in higher dimensions because it mollifies the curse of dimensionality which
afflicts deterministic sampling, restricting it to a rather coarse mesh in higher dimensions. On the other hand,
Monte Carlo sampling is inefficient for nonstandard distributions and the solution is noisy even with a sub-
stantial sample size. For deterministic sampling, we associate a weight
wn ¼
Z

Cn

f ðx; pÞdxdp; ð35Þ
to the particle ðx0; p0; 0Þ over a cell Cn. For Monte Carlo sampling, we associate a uniform weight wn to nor-
malize over the sample.

At each time step we use a second-order symplectic solver [11] to compute ðxnþ1; pnþ1; tnþ1Þ with tn = nDt.
We estimate the updated position of the particle
x� ¼ xn þ Dtpn � 1

2
ðDtÞ2rV ðxnÞ; ð36aÞ

p� ¼ pn � 1

2
DtðrV ðxnÞ þ rV ðx�ÞÞ: ð36bÞ
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If x* is in the same region as xn, i.e., if the particle has not crossed the barrier CQ during the time interval
½tn; tnþ1�, we set ðxnþ1; pnþ1Þ ¼ ðx�; p�Þ. If x* is in a different region from xn, then we approximate the time
tn + Dt* of the barrier crossing
Fig. 1.
constru
Dt� ¼ dðxnÞ
dðx�Þ þ dðxnÞ





 



Dt; ð37Þ
where d(x) is the distance to the barrier. The time, position and momentum of intersection with the barrier are
estimated by the solver (36) using Dt*.

The push interface condition (12) is used to connect the appropriate bicharacteristics at the barrier. Since
the bicharacteristics are not unique, either a Monte Carlo approach or a deterministic branching method are
used to select a bicharacteristic using conditional probabilities based on the incident momentum. In the Monte
Carlo method, the scattering angle (reflection or transmission) is chosen by randomly sampling from the dis-
tribution of scattering directions. Once an outgoing bicharacteristic is chosen, we compute the position
ðxnþ1; pnþ1Þ of the particle at time tn+1 by using the solver (36) with the remaining time step given by Dt � Dt*

with Dt* defined by (37).
The unit normal vector to CQ at x* may be calculated either analytically or approximated by using

n̂ ¼ rdðx�Þ=jrdðx�Þj where the signed-distance d(x*) is interpolated linearly. The component of the momen-
tum normal to CQ at x* is p? ¼ ðp � n̂Þn̂ When the potential V ðx; yÞ is continuous along the length of the barrier
curve, there are only two branches – one transmitted branch and one reflected branch. In this case, the change
to the particle momentum is
Dp ¼ p? �1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2mDV =jp?j2

q� �
for transmission;

Dp ¼ �2p? for reflection:
If there are only two branches, it is convenient to use a deterministic branching algorithm by continuing the
solution along both transmitted and reflected bicharacteristics. See Fig. 1. To each branch we associate a con-
ditional scattering (transmission and reflection) probability. We track along a branch using the solver (36) un-
til we reach a new node. The particle information ðx; p; tÞ is saved at the node and we take the reflection
branch. We continue in such a manner – taking the reflection branch at each new node – until the end of
the simulation time. The probability that a particle follows the kth forward global bicharacteristic is the prod-
uct of the conditional probabilities sk;j for each node. Therefore, from Eq. (14) the contribution is
wn;k ¼ wn

YNk

j¼1

sk;j: ð38Þ
We back up to the most recent node that has an unexplored transmission branch. The particle information
ðx; p; tÞ is set to information previously stored at that specific node. We then take the transmission branch,
continuing as above until the end of the simulation. Once all transmission branches have already been
0
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Trajectories and the associated binary tree for a circular potential. By considering the solution in terms of a binary tree, one may
ct a deterministic solution.
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explored, i.e., once we have backed up to zeroth node, we have found all the forward bicharacteristics for the
particle initially at ðx0; p0Þ. While the deterministic method requires insignificantly more computer memory
than a Monte Carlo approach, it may require substantially larger operation counts if there are several
branches to be explored. The Monte Carlo approach itself requires several iterations for convergence. There-
fore, barrier geometry is an important consideration in the decision of which method to use.

The solution qðx; tÞ ¼
R R1
�1 f ðx; p; tÞdp is reconstructed by interpolating over a uniform mesh using a

smoothing kernel such as a bicubic spline. Let Dx and Dy denote the mesh spacing and let the nearest mesh
point to ðx; yÞ be ðxi; yjÞ for some ði; jÞ. Let r = (x � xi)/Dx and s = (y � yj)/Dy denote the offset from that
mesh point. We are interested in recovering the position density, we do not need to reconstruct over the
momentum. The probability For l;m 2 f�2; . . . ; 2g define mesh-constrained approximation to qðx; yÞ as
~qiþl;jþm ¼ wn;k rðr þ lþ 1

2
Þ � rðr þ l� 1

2
Þ

� �
rðsþ mþ 1

2
Þ � rðsþ m� 1

2
Þ

� �
; ð39Þ
with the cut-off function [21]
rðuÞ ¼

0 u < �2;

1
24
ð2þ uÞ4 �2 < u < �1;

1
2
þ 1

3
ð2u� u3Þ � 1

8
u4 �1 < u < 0;

1
2
þ 1

3
ð2u� u3Þ þ 1

8
u4 0 < u < 1;

1� 1
24
ð2� uÞ4 1 < u < 2;

1 2 < u:

8>>>>>>>>>>><>>>>>>>>>>>:

The probability distribution f ðx; p; tÞ may be reconstructed using the four-dimensional cutoff function analo-
gous to r(u).

The deterministic method (for two branches) is summarized as follows:

(1) During initialization, compute the scattering coefficients associated with the components of momentum
normal to the interface. The coefficients are saved in a table over which to interpolate.

(2) Calculate the weight w associated with the initial distribution using (35), for a particle initially at
ðx0; p0; t0 ¼ 0Þ.

(3) Begin with node I = 0. While the node index I > 0:

(a) Compute (x*,p*) from ðxn; pnÞ using (36).
(b) If x* and xn are both in the same regions, take ðxnþ1; pnþ1Þ ¼ ðx�; p�Þ. Otherwise:
(i) Compute the position and momentum ðx�; p�Þ and the unit normal n̂ at barrier.
(ii) Increment the node index I and save ðx�; p�; t�Þ to the new node.

(iii) Take the reflection branch and calculate ðxnþ1; pnþ1Þ using (36) with time step Dt � Dt* given by
(37).
(c) If t P tmax:

(i) Reconstruct the solution using (39).

(ii) Decrease I to latest node with an unexplored transmission branch.
(iii) Set ðx�; p�; t�Þ to value stored at node I.
(iv) Take the transmission branch and calculate ðxnþ1; pnþ1Þ using (36) with Dt � Dt*.

The Monte Carlo method is summarized as follows:

(1) Initialization. Calculate the scattering distribution associated with the momentum incident to the quan-
tum barrier. Save the coefficients in a table over which to interpolate.

(2) Choose an initial particle ðx0; p0Þ from the initial distribution using Monte Carlo sampling.
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(3) For each particle, while tn < tmax:

(a) Calculate ðx�; p�Þ from ðxn; pnÞ using (36).
(b) If x* and xn are both in the same regions, take ðxnþ1; pnþ1Þ ¼ ðx�; p�Þ. Otherwise:
(i) Compute the position and momentum at barrier ðx�; p�Þ using Eq. (37) and compute the unit
normal n̂ at x*.

(ii) Use Monte Carlo sampling of the scattering coefficient s(h) to determine the scattering momen-
tum p*.

(iii) Calculate ðxnþ1; pnþ1Þ using (36) with time step Dt � Dt* given by (37).
(4) Reconstruct the solution using (39). Go back to Step 2.

4. Numerical examples

In this section, we present two examples to verify the numerical scheme and validate the semiclassical
model. Because of limitations in computer resources required to solve the von Neumann equation as discussed
in [14] – even using an indirect method – we shall limit the analysis to a Schrödinger wavepacket. In the first
example, we consider the scattering with a circular step-potential. This geometry is important because it cap-
tures phenomena such as caustics and internal reflection. In the second example, we consider the scattering on
an electron diffraction grating for which the potential varies on the quantum length scale along the length of
the barrier. Such an interface produces multiple scattering angles.

To solve the time-dependent Schrödinger equation we use a time-splitting pseudospectral method with
Strang splitting [2,3]. The kinetic and potential terms are split so that for each time step we have
wðx; y; t þ DtÞ ¼ eDtB=2F�1½eDtAFðeDtB=2wðx; y; tÞÞ�; ð40Þ
where
A ¼ exp Dt
e

2mi
k2

x þ k2
y

� �� �
and B ¼ exp Dt

1

ie
V ðx; yÞ

� �
;

and the operators F and F�1 denote the two-dimensional discrete Fourier transform and discrete inverse Fou-
rier transform with respect to the ðx; yÞ and ðkx; kyÞ variables. When the potential is discontinuous, the solution
exhibits artificial oscillations unless Dt < (Dx)2/e and Dt < e/V(x). Therefore, we take Dx < e/2, allowing us to
take Dt < e/4.

By solving the Schrödinger equation over a periodic domain (rather than an unbounded domain), spurious
solutions are eventually introduced as information is transmitted across the domain boundaries. By embed-
ding the domain in a larger domain we can emulate an unbounded domain for a sufficiently short simulation
time; however, this approach is inefficient especially in higher dimensions. An alternative method to approx-
imate an unbounded domain is to employ an absorbing potential V Bðx; yÞ near the boundaries [12,19]. By add-
ing a negative imaginary potential that decays rapidly away from the domain boundaries, we have the
modified Schrödinger equation
o

ot
wðx; y; tÞ ¼ 1

2
im�1Dwðx; y; tÞ � iV ðx; yÞwðx; y; tÞ � V Bðx; yÞwðx; y; tÞ;
where V Bðx; yÞ > 0. Such a potential should be strong enough to eliminate (at least to sufficient precision) any
wave information passing through the boundaries, yet not so strong as to reflect the wave. In addition, the
potential should be sufficiently narrow so that it does not affect the solution away from the boundary or re-
quire an overly large border. In this case, we take
V BðxÞ ¼ V 0 sech2ððx� xbÞ=e‘Þ

where xb is the position of the domain boundary, V0 is the barrier strength, and ‘is the characteristic barrier
width. One may examine other absorbing potentials by using transfer matrices discussed [14,18,10]. For this
potential the transmission, reflection and absorption coefficients may be found exactly giving [8]
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T ¼ Cð�ip‘� cÞCð�ip‘þ cþ 1Þ
Cð�ip‘ÞCð�ip‘þ 1Þ





 



2; R ¼ Cð�ip‘� cÞCð�ip‘þ cþ 1Þ
Cð�cÞCðcþ 1Þ





 



2 and A ¼ 1� T � R;
where C is the gamma function, c ¼ � 1
2
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 8iV 0‘

2
p

and p is the normal component of the incident momen-
tum. When p‘� 1, c 	 ð1� iÞV 1=2

0 ‘, and hence T 	 R at p ¼ V 1=2
0 . See Fig. 2. By adjusting V0 we may ‘‘tune’’

the barrier to absorb a specific range of energies by maximizing the absorption coefficient A. Note that the
reflection and transmission coefficients are independent of e and by taking Dx = e/2, we may specify the barrier
thickness in terms of grid points.

To compare the convergence of the Schrödinger to the semiclassical limit in two dimensions we consider the
following L1-errors:


 The L1-error of the position probability density function (pdf)
Z Z 1

�1
qðx; y; tÞ � q̂ðx; y; tÞj jdy dx:

 The L1-error of the marginal probability distribution function (mpdf)
Z 1

�1

Z 1

�1
qðx; y; tÞ � q̂ðx; y; tÞdy





 



dx:
In the above definitions, qðx; y; tÞ ¼
R R1
�1 f ðx; y; p; q; tÞdp dq for the semiclassical Liouville solution and

q̂ðx; y; tÞ ¼ jwðx; y; tÞj2 for the Schrödinger solution.
In both examples we take the effective mass m = 1.

4.1. Schrödinger O(1) wave envelope with a circular barrier

Consider the circular barrier with unit diameter
V ðxÞ ¼
0 x 2 X1 ¼ fxjjxj > 1

2
g;

1
2

x 2 X2 ¼ XC
1 :

(

Consider initial conditions
wðx; y; 0Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2pr2
p exp

�ðx� x0Þ2 � ðy � y0Þ
2

4r2

 !
exp

iðp0xþ q0yÞ
e

� �
; ð41Þ
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ial is ‘‘tuned’’ to absorb the momenta near p = 1.06 used in Section 4.1.
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describing a symmetric Gaussian wavepacket initially located at ðx0; y0Þ traveling with momentum ðp0; q0Þ. In
the semiclassical limit we take the initial conditions
Fig. 3.
numer
f ðx; y; p; qÞ ¼ 1

2pr2
exp

�ðx� x0Þ2 � ðy � y0Þ
2

2r2

 !
dðp � p0Þdðq� q0Þ: ð42Þ
Let ðx0; y0Þ ¼ ð�1;�1Þ, ðp0; q0Þ ¼ 3
4
; 3

4

� �
and r ¼ 1

4
. We compute over a square domain with length L = 4. We

determine the reflection coefficient to be
RðjpjÞ ¼
jpj2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jpj2 þ 1

q



 



4 for a particle entering X1 from X2;

jpj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jpj2 � 1

q



 



4 for a particle entering X2 from X1:

8>>><>>>:

The Schrödinger equation is solved by using a time-splitting pseudospectral method with Strang splitting (40) with
Dx = e/2 and Dt = e/4. Spurious reflections and transmissions are mollified across the periodic boundary condi-
tions by using an absorbing boundary with width ‘ = 50e = 100Dx encircling the domain. The semiclassical solu-
tion is computed using a deterministic particle method with approximately 109 particles and reconstructed using a
mesh spacing Dx = 100�1. Since the semiclassical solution is reconstructed over a coarser mesh than the Schrö-
dinger solution, we linearly interpolate the semiclassical solution to compare it and Schrödinger solutions.

The marginal probability (position) density function
R

qðx; y; tÞdy for the semiclassical Liouville solution
and the Schrödinger solution for several values of e are shown in Fig. 3. Time evolution of the Schrödinger
solutions and semiclassical solutions are shown in Figs. 4 and 5. The errors in the two solutions are listed
in Table 1. Based on our study, we find the convergence rate of the L1-errors to be about first-order.

Notable phenomena emergent in the Schrödinger solution to this example are formation of interior caustics
and internal reflection. See Figs. 4 and 5. Suppose a particle originally in a region X1 with potential V1 is trans-
mitted across an interface CQ near the critical angle and enters a convex region X2 with potential V2 > V1. The
particle ‘‘creeps’’ internally along the interface CQ, and with a nonvanishing probability the particle is trapped
in the region of higher potential. While the semiclassical model accurately captures both caustics and internal
reflection, the classical model does not.

4.2. Electron diffraction grating

Consider the semiclassical potential
V ðx; yÞ ¼ V 0
Q if ðx; yÞ 2 CQ;

0 otherwise;

(
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Marginal position density function for Section 4.1 for (a) e = 50�1, (b) e = 100�1, (c) e = 200�1 and (d) e = 400�1 at time t = 2. The
ical semiclassical limit is indicated by *. The plots are offset by 0.25 for clarity.



Fig. 4. Solutions for Section 4.1 for e = 50�1 (left) and e = 100�1 (right) at times t ¼ 0; 2; 4; 6 and 8.
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where CQ is a smooth curve – we shall take the CQ to be y-axis to simplify the analysis. The quantum potential
V 0

Q ¼ lime!0V Qðex0; ey0Þ, where x 0-axis is normal to CQ and the y 0-axis is parallel to the CQ. Let the local quan-
tum potential (with x and y scaled by e) be given by
V Qðx; yÞ ¼ f ðxÞð1þ cos ayÞ with f ðxÞ ¼ 1

2
ð1þ cos pxÞ;
if x 2 ½�1; 1� and y 2 R, where a is some parameter. Take V ðx; yÞ ¼ 0 elsewhere.
We begin by determining the scattering coefficients for the barrier. Consider a particle with momentum p

(and energy E ¼ 1
2
p2) with an incident angle hin and a scattering angle h. The y-component of the incident

momentum is nin = p sinhin and the y-component of the scattered momentum is n = p sinh. Then the x-com-

ponent of the momentum is gðnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 � n2

q
. Let ŵQ be the Fourier transform of wQ with respect to y as

defined in Section 3.1. By using the identity
Z 1

�1
f ðxÞð1þ cos ayÞwQðx; yÞe�iny dy ¼ 1

2
f ðxÞðŵQðx; nþ aÞ þ 2ŵQðx; nÞ þ ŵQðx; n� aÞÞ:
Eq. (28) becomes
� o
2

ox2
ŵQðx; nÞ � g2ðnÞŵQðx; nÞ þ f ðxÞðŵQðx; nþ aÞ þ 2ŵQðx; nÞ þ ŵQðx; n� aÞÞ ¼ 0; ð43Þ



Fig. 5. Solutions for Section 4.1 for e = 200�1 (left) and the semiclassical limit (right) at times t ¼ 0; 2; 4; 6 and 8.
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with the mixed boundary values
Table
The L

values

e

pdf
mpdf
igðnÞŵQ þ
o

ox
ŵQ ¼ 2igðnÞdðn� ninÞ at x ¼ �1; ð44aÞ

igðnÞŵQ �
o

ox
ŵQ ¼ 0 at x ¼ þ1: ð44bÞ
To solve the boundary value problem (43) and (44) we consider a finite difference method. Let xi be the
discretization of x over [�1,1] using m grid points with uniform spacing Dx. Let nj be the discretization of
n using a uniform spacing Dn = a/d for an integer d. The second-order centered-difference approximation
of (43) is
1
1-errors in the probability density function and marginal probability density function of the solutions of Section 4.1 for different
of e

50�1 100�1 200�1 400�1 Convergence

4.52 · 10�1 2.90 · 10�1 1.73 · 10�1 1.24 · 10�1 0.6
3.20 · 10�1 1.01 · 10�1 5.03 · 10�2 2.37 · 10�2 1.2
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� uiþ1;j � 2uij þ ui�1;j

ðDxÞ2
� g2

j uij þ ðui;jþd þ 2uij þ ui;j�dÞfi ¼ 0; ð45Þ
where we define uij ¼ ŵQðxi; njÞ, fi = f(xi) and gj = g(nj). As a simplification, one may restrict nin to a grid point
k (nin = nk) and interpolate over the scattering coefficients to approximate intermediate values. The second-or-
der approximation of the boundary conditions (44) are
igju1j þ
u2;j � u0;j

2Dx
¼ 2igjdjk; ð46aÞ

igjumj �
umþ1;j � um�1;j

2Dx
¼ 0: ð46bÞ
where djk = 1 if j = k and djk = 0 otherwise. Substituting the value for u0;j from the left boundary condition
(46a) and substituting the value for umþ1;j from the right boundary condition (46b) into Eq. (45), we have
the equivalent system of equations
ðDxÞ2g2
j � 2ðDxÞ2fi � 2

� �
uij þ uiþ1;j þ ui�1;j � ðDxÞ2fiui;jþd � ðDxÞ2fiui;j�d ¼ 0 for 1 < i < m; ð47aÞ

2u2;j þ ðDxÞ2g2
j � 2ðDxÞ2f1 � 2þ i2ðDxÞgj

� �
u1j � ðDxÞ2f1u1;jþd � ðDxÞ2f1u1;j�d ¼ 4iðDxÞgjdjk; ð47bÞ

2um�1;j þ ðDxÞ2g2
j � 2ðDxÞ2fm � 2þ i2ðDxÞgj

� �
umj � ðDxÞ2fmum;jþd � ðDxÞ2fmum;j�d ¼ 0: ð47cÞ
By condition (27) we have that uij = 0 if |nj| P p. Furthermore, the solutions uij = 0 if
j 62 f. . . ; k � d; k; k þ d; . . .g. Therefore, for each incident momenta nk, we solve system (47) for
j 2 f. . . ; k � d; k; k þ d; . . .g. Let {l} be the n-element enumeration of this set. In this case, we may express
the equations as the system Mv = b where the nm-element vector v is defined using vi+mj = uij, b is defined using
bi+mj = 4i(Dx)gj and M is the block tridiagonal matrix with components
M ¼

T ð1Þ D

D T ð2Þ D

. .
. . .

. . .
.

D T ðn�1Þ D

D T ðnÞ

0BBBBBBB@

1CCCCCCCA:
In this matrix, D are m · m diagonal matrices with Dij = �(Dx)2fidij and T(l) are m · m tridiagonal matrices
T ðlÞij ¼ ðDxÞ2g2
J � 2ðDxÞ2fi � 2

� �
dij þ diþ1;j þ di�1;j;
with the exceptions T ðlÞii ¼ ðDxÞ2g2
l � 2ðDxÞ2fi � 2þ i2ðDxÞgl for i ¼ 1;m and T ðlÞ12 ¼ 2 and T ðlÞm;m�1 ¼ 2.

From (25), the transmission coefficients are given by jvmþnlj2g�1
k gl. The reflection coefficients are given by

|1 � v1+nl|
2 when l corresponds to k incident and jv1þlj2g�1

k gl otherwise. The discrete scattering angles are given
by
hl ¼ � sin�1 nk � la
jpj

� �
;

which is simply the Fraunhofer diffraction grating formula
lk ¼ dðsin hin þ sin hlÞ;

with wavelength k = 2pe/|p| and groove spacing d = 2pa�1.

To validate the semiclassical model, we took a ¼ 1
2

and considered the initial conditions (41) and (42) with
r = 1/16 and ðp0; q0Þ ¼ ðcos hin; sin hinÞ, ðx0; y0Þ ¼ 0:3ð� cos hin; sin hinÞ where hin = 10�. The semiclassical
model can be solved exactly by considering the method of characteristics with the scattering coefficients com-
puted numerically. In this case
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Fig. 6. Contour plot of solution to Section 4.2 at q(x,y) = 2 for e = 200�1 at t = 0.25, 0.5, 0.75 and 1.0. The contour of the Schrödinger
solution is filled in and the contour for numerical semiclassical limit is illustrated by a bold line.
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Table 2
The L1-errors in the probability density function and marginal probability density function of the solutions of Section 4.2 for different
values of e

e 100�1 200�1 400�1 800�1 Convergence

pdf 6.09 · 10�1 3.05 · 10�1 2.25 · 10�1 2.09 · 10�1 0.8
mpdf 3.46 · 10�1 1.81 · 10�2 1.33 · 10�1 1.04 · 10�1 0.9
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qðx; y; tÞ ¼ q0ðx�; y�Þ þ
X

k

sðhkÞq0 x� � cos hk � cos hin

cos hk
x; y� � sin hk þ sin h in

cos hk
x

� �
1ðx cos hk>0Þ;
where x* = x � tcoshin and y* = y + t sinhin and q0ðx; yÞ is the position density of the initial distribution (41).
The qðx; yÞ ¼ 2 contours of the position density for the Schrödinger solution and the semiclassical solution

are shown in Figs. 6 and 7 for e = 200�1 and 800�1. The errors in the two solutions are listed in Table 2. The
solutions have roughly first-order convergence in probability density functions. As evident in Figs. 6 and 7,
while the semiclassical model does agrees with the Schrödinger solution for small scattering angles, there is
some discrepancy at larger scattering angles.

5. Conclusion

In this paper, we investigated a time-dependent quantum transport model in the semiclassical limit for two-
dimensional O(e) barriers. We implemented a particle method to solve the model and we verified that the
model correctly describes the weak limit of the Schrödinger equation. Currently, we are considering for more
general applications, namely a coherent semiclassical model.
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